发表文献 发表文献 发表文献 发表文献

发表文献

  • 引用快序生物(Rapid Novor)技术的文献

    Nichakawade et al. (2024). TRBC1-targeting antibody–drug conjugates for the treatment of T cell cancers. Nature. https://doi.org/10.1038/s41586-024-07233-2

    Fan, Huishou et al. (2024).Monitoring Minimal Residual Disease in Patients with Multiple Myeloma by Targeted Tracking Serum M-Protein Using Mass Spectrometry (EasyM). Clinical cancer research . DOI: 10.1158/1078-0432.CCR-23-2767

    Ren et al. (2024). Generation and optimization of off-the-shelf immunotherapeutics targeting TCR-Vβ2+ T cell malignancy. Nat Commun 15, 519 https://doi.org/10.1038/s41467-024-44786-2 

    Carmen Martin-Alonso et al. (2024). Priming agents transiently reduce the clearance of cell-free DNA to improve liquid biopsies. Science 383 doi:10.1126/science.adf2341

    Shen, Lianghua et al. (2024) .Circular mRNA-based TCR-T offers a safe and effective therapeutic strategy for treatment of cytomegalovirus infection. Molecular therapy. https://doi.org/10.1016/j.ymthe.2023.11.017 

    Urbano et al. (2023). Combined analytical assays for the characterization of drugs binding to human IgE: Applicability to omalizumab-bearing biosimilar candidates assessment. Biomed Pharmacother https://doi.org/10.1016/j.biopha.2023.115848 

    Rezazadeh et al. (2022). Evaluation and selection of a lead diabody for interferon-γ PET imaging. Nucl Med Biol. https://doi.org/10.1016/j.nucmedbio.2022.06.001

    Jo et al. (2022). Subtype-specific single β1 integrin mechanics for activation, mechanotransduction and cytoskeleton remodeling. Biorxiv 2022.06.08.495291 https://doi.org/10.1101/2022.06.08.495291 

    Wang et al. (2021). First Immunoassay for Measuring Isoaspartate in Human Serum Albumin. Molecules 26(21): 6709 https://doi.org/10.3390/molecules26216709 

    DeLuca et al. (2021). Generation and diversification of recombinant monoclonal antibodies for studying mitosis. eLife 10: e72093 https://doi.org/10.7554/eLife.72093 

    Kierkels et al. (2021). Characterization and modulation of anti-αβTCR antibodies and their respective binding sites at the βTCR chain to enrich engineered T cells. Mol Ther Methods & Clin Dev 22: 388-400 https://doi.org/10.1016/j.omtm.2021.06.011 

    Dang et al. (2021). Broadly neutralizing antibody cocktails targeting Nipah virus and Hendra virus fusion glycoproteins. Nat Structural & Mol Bio 28: 426-434. https://doi.org/10.1038/s41594-021-00584-8 

    Dai et al. (2021). Polymeric assembly of endogenous Tuberous Sclerosis Protein Complex. Biochemistry 60(23):1808-1821 https://doi.org/10.1021/acs.biochem.1c00269 

    Radichev et al. (2020). Towards antigen-specific Tregs for type 1 diabetes: Construction and functional assessment of pancreatic endocrine marker, HPi2-based chimeric antigen receptor. Cellular Immunol 358: 104224. https://doi.org/10.1016/j.cellimm.2020.104224 

    Bratslavsky & Tsimafeyeu (2019). 499P – Identification of first-in-class, naturally occurring LAG3 checkpoint inhibitor. Annals of Oncology 30(5). https://www.sciencedirect.com/science/article/pii/S092375341958721X 

    Kierkels, G.J.J. (2019). TCR engineered T cell therapy from concepts to clinic. Utretch University Repository. https://dspace.library.uu.nl/handle/1874/379914 

    Arboleda-Velasquez et al. (2019). Resistance to autosomal dominant Alzheimer’s disease APOE3 Christchurch homozygote: a case report. Nat Med 25 1680-1683. https://doi.org/10.1038/s41591-019-0611-3 

  • 引用快序生物(Rapid Novor)技术的专利

    MBrace Therapeutics, Inc. (2024). United States Patent Application 20240068004 CELL-FREE METHODS OF PRODUCING ANTIBODIES TO INTRACELLULAR TARGETS. https://www.freepatentsonline.com/y2024/0068004.html 

    Janssen Biotech, Inc. (2021). United States Patent Application 20210032338 MATERIALS AND METHODS FOR MODULATING T CELL MEDIATED IMMUNITY. https://www.freepatentsonline.com/y2021/0032338.html 

    Janssen Biotech, Inc. (2021). United States Patent Application US20210284731 A1. METHODS AND MATERIALS FOR MODULATING AN IMMUNE RESPONSE.

    Biond Biologics LTD. (2021). METHODS AND COMPOSITIONS FOR DECREASING SOLUBLE IMMUNE RECEPTOR CD28. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019175885 

    Biond Biologics LTD. (2020). SMALL SHEDDING BLOCKING AGENTS. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020183473 

    Souvie Biodelivery, LLC. (2020). US Patent Application US 20200362052 COMPOSITIONS AND METHODS FOR TREATING TOLL-LIKE RECEPTOR-DRIVEN INFLAMMATORY DISEASES.

    Capienda Biotech. WIPO Patent Application WO/2019/195179 (2019). COMPOSITIONS AND METHODS FOR TREATING INFLAMMATORY DISEASES. https://www.sumobrain.com/patents/wipo/Compositions-methods-treating-inflammatory-diseases/WO2019195179A1.html 

    Carnegie Institution of Washington (2017). Regeneration of aged satellite cells. United States Patent Application US20170369578A1 https://patents.google.com/patent/US20170369578?oq=%22rapid+novor%22 

  • 快序生物(Rapid Novor)发表的文献和技术文章

    Gholamizoj et al. (2022). Automatic Detection of the Protease used in Bottom-Up Proteomics Experiments. ASMS 2022, MP 261 Perez-Witzke et al. (2021). Sequencing and expression of monoclonal antibodies from a polyclonal goat antibody sample. PEGS Europe https://www.rapidnovor.com/sequencing-recombinant-goat-polyclonal-antibodies/ 

    Liyasova et al. (2021). M-Protein Sequencing and Monitoring in Serum of LC-Only Multiple Myeloma Patients. Blood 138, 4729–4729 https://doi.org/10.1182/blood-2021-149785 

    McDonald et al. (2021). Mass Spectrometry Provides a Highly Sensitive Noninvasive Means of Sequencing and Tracking M-Protein in the Blood of Multiple Myeloma Patients. J. Proteome Res 20(8): 4176-4185 https://doi.org/10.1021/acs.jproteome.0c01022 

    Liyasova et al. (2021). A Personalized Mass Spectrometry–Based Assay to Monitor M-Protein in Patients with Multiple Myeloma (EasyM). Clin Cancer Res 28(18): 5028 – 5037 https://doi.org/10.1158/1078-0432.ccr-21-0649 

    Liu et al. (2020). Rapid Total Search: Peptide Identification in 200 Million Proteins with Unrestricted Modifications and Nonspecific Digestion. ASMS 2020. ThP 289 Guan et al. (2020). Data Dependent–Independent Acquisition (DDIA) Proteomics. J Proteome Res. 19(8): 3230-3237 https://doi.org/10.1021/acs.jproteome.0c00186 

    Le Bihan et al. (2020). A labeling strategy to improve peptide fragmentation and to distinguish isobaric amino acids by EThcD. ASMS 2020, TP 033

    McDonald et al. (2019). Targeted Mass Spectrometry-Based Serum M-Protein Monitoring for Early Relapse Detection. Blood 134 (Supp. 1): 4347 https://doi.org/10.1182/blood-2019-130251 

    Le Bihan et al. (2019). Increased De Novo Protein Sequencing Coverage with Optimal Protease Cocktail. ASMS 2019 Atlanta, TP 020

    McDonald et al. (2018). Studying the Prevalence of Secondary Light Chains in Research Purpose Monoclonal Antibodies with MS-Based De Novo Protein Sequencing. ASMS 2018 San Diego, MP 063 https://www.rapidnovor.com/research/prevalence-of-secondary-light-chains/ 

    McDonald et al. (2018). New Blood Based M-Protein Quantification Method 3,000 Times More Sensitive Than Standard SPEP. Blood 132, 1905–1905 https://doi.org/10.1182/blood-2018-99-114907 

    Taylor et al. (2016). In-Depth Characterization of Monoclonal Antibodies with a Single Experiment and Fully Automated Data Analysis. ASMS: MP018

    Ma, Bin. (2015). Novor: real-time peptide de novo sequencing software. Journal of the American Society for Mass Spectrometry vol. 26,11 (2015): 1885-94. doi:10.1007/s13361-015-1204-0

    Zhang, Jing et al. (2015). PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Molecular & cellular proteomics : MCP vol. 11,4 (2012): M111.010587. doi:10.1074/mcp.M111.010587

    Ma, Bin et al. (2012). De novo sequencing and homology searching. Molecular & cellular proteomics : MCP vol. 11,2 (2012): O111.014902. doi:10.1074/mcp.O111.014902

    Liu, Xiaowen et al. (2009). Automated protein (re)sequencing with MS/MS and a homologous database yields almost full coverage and accuracy. Bioinformatics (Oxford, England) vol. 25,17 (2009): 2174-80. doi:10.1093/bioinformatics/btp366

    Han, Yonghua et al. (2005). SPIDER: software for protein identification from sequence tags with de novo sequencing error. Journal of bioinformatics and computational biology vol. 3,3 (2005): 697-716. doi:10.1142/s0219720005001247

    Ma, Bin et al. (2003). PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid communications in mass spectrometry : RCM vol. 17,20 (2003): 2337-42. doi:10.1002/rcm.1196


  • 引用快序生物(Rapid Novor)软件的文献

    Nogueira et al. (2021). Ancient enamel peptides recovered from the South American Pleistocene species Notiomastodon platensis and Myocastor cf. coypus. J. Proteomics. 240: 104187 https://www.sciencedirect.com/science/article/abs/pii/S1874391921000865#ks0005 

    Vanuopadatha et al. (2020). Delineating the venom toxin arsenal of Malabar pit viper (Trimeresurus malabaricus) from the Western Ghats of India and evaluating its immunological cross-reactivity and in vitro cytotoxicity. Intl. J. Biological Molecules 148: 1029-1045 https://www.sciencedirect.com/science/article/abs/pii/S0141813019400706 

    Vyatkina, K.V. (2018). De novo Sequencing of Proteins and Peptides: Algorithms, Applications, Perspectives. Biomed. Chem: Res & Met 1(1) http://195.178.207.145/index.php/bmcrm/article/view/5 

    Nair et al. (2018). Identification, purification, biochemical and mass spectrometric characterization of novel phycobiliproteins from a marine red alga, Centroceras clavulatum. Intl. J. Biological Macromolecules 114: 679-691 https://www.sciencedirect.com/science/article/abs/pii/S0141813017348018